LAr Computing Infrastructure

Brian Rebel Fermilab

LAr Experiments

- Purpose
 - ArgoNeuT: demonstrate working TPC in neutrino beam, develop methods for reconstruction and analysis, measure some neutrino cross-sections
 - μBooNE: measure neutrino cross-sections on LAr in the ~GeV range and understand MiniBooNE low energy excess
- Number of users 50 to 75
 - Remote 50 to 60
 - Using Fermilab facilities 50 to 60

Experiment schedule

ArgoNeuT	Pre-2009	2009	2010	2011	2012	2013	2014
Planning	х						
Construction		X					
Commissioning		X					
Data taking		X					
Data analysis		X	X				

μΒοοΝΕ	Pre-2009	2009	2010	2011	2012	2013	2014
Planning	х	X	X				
Construction			X	х			
Commissioning				х	x		
Data taking				х	x	X	X
Data analysis					x	X	X

Data

- How many events/year?
 - Pedestal and calibration unknown
 - Normal data
 - ArgoNeuT: ~6k events total run, not including spills without events
 - μBooNE: ~30k events per year, not including spills without events
- How large is each event?
 - Non zero-suppressed
 - ArgoNeuT: 1.88 MB per spill, 1 spill every 2 seconds
 - μBooNE: 39 MB per spill, 1 spill every

Central FNAL systems

- CPU used (see table)
- Storage used (see table)
- Uses:
 - Reconstruction and data filtering
 - Calibration and alignment
 - MC Generation
 - User data analysis

Data flow

ArgoNeuT	Pre-2009	2009	2010	2011	2012	2013	2014
Raw Data, TB		3	3				
Processed Data, TB		5	5				
User data, TB		1	1				
Simulated data, TB		3	3				

μBooNE is not far enough along to say

CPU needs

	Pre-200 9	2009	2010	2011	2012	2013	2014
Running							
Reconstruction							
Calibration							
Skimming							
Analysis							
Simulation							

Software is not advanced enough to answer these questions. ArgoNeuT should not be a drain on resources, µBooNE will be noticed

Operating systems

- What OS is used?
 - Scientific Linux, Mac OS X
- Do all collaborators have to use the same one?
 - No, but only a few will be supported from software point of view

Data storage and tracking

- How do you catalog data?
 - Undecided, SAM is possibility
- How do you provide remote access to data?
 - Undecided, suggestions welcome

Remote systems

- How many remote institutions provide resources for your users/collaboration
 - None, although some possibilities may exist
- Do they have special systems for you or shared?
- What is done at remote institutions?
 - Code development: yes
 - Reconstruction: no
 - MC generation: probably
 - User analysis: yes

Data distribution to remote sites

- Where are data distributed
- What kind of data
- How much data
- How fast does it need to move
- What method is used

None of these issues have been discussed within the collaboration

Grid

- Do you use the Grid
 - Not yet
- Do you use Grid tools such as Gridftp? TBD
- Do you use Gliden or some other tool? TBD
- Do you use the FNAL Grid exclusively or do you use more general grid resources? TBD

Databases

- Technology used
 - None yet, whatever is easiest to implement
- Size
 - Unknown
- Access rate
 - Will likely use it in both detector monitoring and reconstruction
- Are they replicated remotely? TBD
- What is stored
 - Calibrations
 - Monitoring
 - Hardware changes

Conditions

- How are conditions and calibrations stored?
 - Stored in DB
- How are they accessed?
 - C++ code, probably through ROOT

Code management

- Code repository
 - CVS
- Build system
 - SoftRelTools

Standard packages

- What standard packages are used:
 - GEANT4
 - ROOT
 - GENIE
 - CLHEP
 - PYTHIA
 - GDML

What worked really well?

What would you not do again?